
‘Semiconducting – Making Music After the Transistor’1
Nicolas Collins

Abstract
Why does ‘Computer Music’ sound different from ‘Electronic Music’? The
author examines several traits that distinguish hardware from software in terms
of their application in music composition and performance. He discusses the
often subtle influence of these differences on various aspects of the creative
process, and presents a number of inferences as to the ‘intrinsic’ suitability of
hardware and software for different musical tasks. His observations are based on
several decades of experience as a composer and performer, and in close
engagement with the music of his mentors and peers.

Introduction
At some point in the late 1980s the composer Ron Kuivila proclaimed, ‘we have
to make computer music that sounds like electronic music.’2 This might appear a
mere semantic distinction. At that time the average listener would dismiss any
music produced with electronic technology – be it a Moog or Macintosh – as
‘boops and beeps.’ But Kuivila presciently drew attention to a looming fork in
the musical road: boops and beeps were splitting into boops and bits. Over the
coming decades, as the computer evolved into an unimaginably powerful and
versatile musical tool, this distinction would exert a subtle but significant
influence on music.

Kuivila and I had met in 1973 at Wesleyan University, where we both were
undergraduates studying with Alvin Lucier. Under the guidance of mentors
such as David Tudor and David Behrman, we began building circuits in the early
1970s, and finished out the decade programming pre-Apple microcomputers like
the Kim 1. The music that emerged from our shambolic arrays of unreliable
homemade circuits fit well into the experimental aesthetic that pervaded the
times (the fact that we were bad engineers probably made our music better by
the standards of our community). Nonetheless we saw great potential in those
crude early personal computers, and many of us welcomed the chance to hang
up the soldering iron and start programming.3

The Ataris, Amigas and Apples that we adopted in the course of the 1980s were
vastly easier to program than our first machines, but they still lacked the speed
and processor power needed to generate complex sound directly. Most
Computer Music composers of the day hitched their machines to MIDI
synthesizers, but even the vaunted Yamaha DX7 was no match for the irrational
weirdness of a table strewn with Tudor’s idiosyncratic circuits arrayed in
unstable feedback matrices. One bottleneck lay in MIDI’s crudely quantized data
format, which had been optimized for triggering equal-tempered notes, and was
ill suited for complex, continuous changes in sound textures. On a more
profound level, MIDI ‘exploded’ the musical instrument, separating sound
(synthesizer) from gesture (keyboard, drum pads, or other controller) – we
gained a Lego-like flexibility to build novel instruments, but we severed the tight

Collins: Semiconducting 2

feedback between body and sound that existed in most traditional, pre-MIDI
instruments and we lost a certain degree of touch and nuance4.

By 2013 MIDI no longer stands between code and sound: any laptop has the
power to generate directly a reasonable simulation of almost any electronic
sound – or at least to play back a sample of it. But I’m not sure that Kuivila’s
goal has yet been met. I can still hear a difference between hardware and
software. Why?

After all, most music today that employs any kind of electronic technology
depends on a combination of hardware and software resources. Although
crafted and/or recorded in code, digital music reaches our ears through a chain
of transistors, mechanical devices, speakers and earphones. ‘Circuit Benders’
who open and modify electronic toys in pursuit of new sounds often espouse a
distinctly anti-computer aesthetic, but the vast majority of the toys they hack in
fact consist of embedded microcontrollers playing back audio samples – one
gizmo is distinguished from another not by its visible hardware but by the
program hidden in ROM. Still, whereas a strict hardware/software dialectic
can’t hold water for very long, arrays of semiconductors and lines of code are
imbued with various distinctive traits that combine to determine the essential
‘hardware-ness’ or ‘software-ness’ of any particular chunk of modern
technology.

Some of these traits are reflected directly in sound – with sufficient attention or
guidance one can often hear the difference between sounds produced by a
hardware-dominated system versus those crafted largely in software. Others
influence working habits -- how we compose with a certain technology, or how
we interact with it in performance; sometimes this influence is obvious, but at
other times it can be so subtle as to verge on unconscious suggestion. Many of
these domain-specific characteristics can be ignored or repressed to some degree,
just like a short person can devote himself to basketball, but they nonetheless
affect the likelihood of one choosing a particular device for a specific application,
and inevitably exert an influence on the resulting music.

I want to draw attention to some distinctive differences between hardware and
software tools as applied to music composition and performance. I am not
particularly interested in any absolute qualities inherent in the technology, but in
the ways certain technological characteristics influence how we think and work,
and the ways in which the historic persistence of those influences can predispose
an artist to favor specific tools for specific tasks. My observations are based on
several decades of personal experience: in my own activity as a composer and
performer, and in my familiarity with the music of my mentors and peers, as
observed and discussed with them since my student days. I acknowledge that
my perspective comes from a fringe of musical culture and I contribute these
remarks in the interest of fostering discussion, rather than to prove a specific
thesis.

I should qualify some of the terms I will be using. When I speak of ‘hardware’ I
mean not only electronic circuitry, but also mechanical and electromechanical

Collins: Semiconducting 3

devices from traditional acoustic instruments to electric guitars. By ‘software’
I’m designating computer code as we know it today, whether running on a
personal computer or embedded in a dedicated microcontroller or DSP. I use the
words ‘infinite’ and ‘random’ not in their scientific sense, but rather as one might
in casual conversation, to mean ‘a hell of a lot’ (the former) and ‘really
unpredictable’ (the latter).

The Traits
Here are what I see as the most significant features distinguishing software from
hardware in terms of their apparent (or at least perceived) suitability for specific
musical tasks, and their often-unremarked influence on musical processes:

• Traditional acoustic instruments are three-dimensional objects, radiating
sound in every direction, filling the volume of architectural space like
syrup spreading over a waffle. Electronic circuits are much flatter,
essentially two-dimensional. Software is inherently linear, every program
a one-dimensional string of code. In an outtake from his 1976 interview
with Robert Ashley for Ashley’s Music With Roots in the Aether, Alvin
Lucier justified his lack of interest in the hardware of electronic music
with the statement, ‘sound is three-dimensional, but circuits are flat.’5 At
the time Lucier was deeply engaged with sound’s behavior in acoustic
space, and he regarded the ‘flatness’ of circuitry as a fundamental
weakness in the work of composers in thrall to homemade circuitry, as
was quite prevalent at the time. As a playing field a circuit may never be
able to embody the topographic richness of standing waves in a room, but
at least a two-dimensional array of electronic components on a fiberglass
board allows for the simultaneous, parallel activity of multiple strands of
electron flow, and the resulting sounds often approach the polyphonic
density of traditional music in three-dimensional space. In software most
action is sequential, and all sounds queue up through a linear pipeline for
digital to analog conversion. With sufficient processor speed and the right
programming environment one can create the impression of simultaneity,
but this is usually an illusion -- much like a Bach flute sonata weaving a
monophonic line of melody into contrapuntal chords6. Given the
ludicrous speed of modern computers this distinction might seem
academic -- modern software does an excellent job of simulating
simultaneity. Moreover, ‘processor farms’ and certain Digital Signal
Processor (DSP) systems do allow true simultaneous execution of multiple
software routines. But these latter technologies are far from commonplace
in music circles and, like writing prose, the act of writing code (even for
parallel processors) invariably nudges the programmer in the direction of
sequential thinking. This linear methodology can affect the essential
character of work produced in software.

• Hardware occupies the physical world and is appropriately constrained in
its behavior by various natural and universal mechanical and electrical
laws and limits. Software is ethereal -- its constraints are artificial,
different for every language, the result of linguistic design rather than pre-
existing physical laws. When selecting a potentiometer for inclusion in a

Collins: Semiconducting 4

circuit a designer has a finite number of options in terms of maximum
resistance, curve of resistive change (i.e., linear or logarithmic), number of
degrees of rotation, length of its slider, etc.; and these characteristics are
fixed at the point of manufacture. When implementing a potentiometer in
software all these parameters are infinitely variable, and can be replaced
with the click of a mouse. Hardware has edges; software is a tabula rasa
wrapped around a torus.

• As a result of its physicality, hardware – especially mechanical devices –
often displays non-linear adjacencies similar to state-changes in the
natural world (think of the transition of water to ice or vapor). Pick a note
on a guitar and then slowly raise your fretting finger until the smooth
decay is abruptly choked off by a burst of enharmonic buzzing as the
string clatters against the fret. In the physical domain of the guitar these
two sounds – the familiar plucked string and its noisy dying skronk – are
immediately adjacent to one another, separated by the slightest movement
of a finger. Either sound can be simulated in software, but each requires a
wholly different block of code: no single variable in the venerable
Karplus-Strong ‘plucked string algorithm’7 can be nudged by a single bit
to produce a similar death rattle; this kind of adjacency must be
programmed at a higher level, and does not typically exist in the natural
order of a programming language. Generally speaking, adjacency in
software remains very linear, while the world of hardware abounds with
abrupt transitions. A break point in a hardware instrument – fret buzz on
a guitar, the unpredictable squeal of the STEIM Cracklebox8 – can be
painstakingly avoided or joyously exploited, but is always lurking in the
background, a risk, an essential property of the instrument.

• Most software is inherently binary: it either works correctly or fails
catastrophically, and when corrupted code crashes the result is usually
silence. Hardware performs along on a continuum that stretches from the
optimum behavior intended by its designers to irreversible, smoky failure;
circuitry – especially analog circuitry – usually produces sound even as it
veers toward breakdown. Overdriving an amplifier to distort a guitar,
feeding back between a microphone and a speaker to play a room’s
resonant frequencies, ‘starving’ the power supply voltage in an electronic
toy to produce erratic behavior – these ‘misuses’ of circuitry generate
sonic artifacts that can be analyzed and modeled in software, but the risky
processes themselves (saturation, feedback, under-voltage) are very
difficult to transfer intact from the domain of hardware to that of software
while preserving functionality in the code9. Writing software favors
Boolean thinking – self- destructive code remains the purview of hackers
who craft worms and Trojan Horses for the specific purpose of crashing or
corrupting computers.

• Software is deterministic, while all hardware is indeterminate to some
degree. Once debugged, code runs the same every time. Hardware is
notoriously unrepeatable: consider recreating a patch on an analog
synthesizer, restoring mixdown settings on a pre-automation mixer, or
even tuning a guitar. The British computer scientist John Bowers once
observed that he had never managed write a ‘random’ computer program

Collins: Semiconducting 5

that would run, but that he could make ‘random’ component substitutions
and connections in a circuit with a high certainty of a sonic outcome (a
classic technique of Circuit Bending)10.

• Hardware is unique, software is a multiple. Hardware is constrained in
its ‘thinginess’ by number: whether handcrafted or mass-produced, each
iteration of a hardware device requires a measurable investment of time
and materials. Software’s lack of physical constraint gives it tremendous
powers of duplication and dissemination. Lines of code can be cloned
with a simple cmd-C/cmd-V: building 76 oscillators into a software
instrument takes barely more time than one, and no more resources
beyond the computer platform and development software needed for the
first. In software there is no distinction between an original and a copy:
MP3 audio files, PDFs of scores, and runtime versions of music programs
can be downloaded and shared thousands of times without any
deterioration or loss of the matrix – any copy is as good as the master. If a
piano is a typical example of traditional musical hardware, the pre-digital
equivalent of the software multiple would lie somewhere between a
printed score (easily and accurately reproduced and distributed, but at a
quantifiable – if modest -- unit cost) and the folk song (freely shared by
oral tradition, but more likely to be transformed in its transmission.) Way
too many words have already been written on the significance of this trait
of software – of its impact on the character and profitability of publishing
as it was understood before the advent of the World Wide Web; I will
simply point out that if all information wants to be free, that freedom has
been attained by software, but is still beyond the reach of hardware. (I
should add that software’s multiplicity is accompanied by virtual
weightlessness, while hardware is still heavy, as every touring musician
knows too well.)

• Software accepts infinite undo’s, is eminently tweakable. But once the
solder cools, hardware resists change. I have long maintained that the
young circuit-building composers of the 1970s switched to programming
by the end of that decade because, for all the headaches induced by
writing lines of machine language on calculator-sized keypads, it was still
easier to debug code than to de-solder chips. Software invites endless
updates, where hardware begs you to close the box and never open it
again. Software is good for composing and editing, for keeping things in
a state of flux; hardware is good for making reasonably stable, playable
instruments that you can return to with a sense of familiarity (even if they
have to be tuned). The natural outcome of software’s malleability has
been the extension of the programming process from the private and
invisible pre-concert preparation of a composition, to an active element of
the actual performance -- as witnessed in the rise of ‘live coding’ culture
practiced by devotees of SuperCollider11 and Chuck12 programming
languages, for example. Live circuit building has been a fringe activity at
best: David Tudor finishing circuits in the pit while Merce Cunningham
danced overhead; the group Loud Objects soldering PICs on top of an
overhead projector13; live coding vs. live circuit building in ongoing

Collins: Semiconducting 6

competition between the younger Nick Collins (UK) and the author for
the Nic(k) Collins Cup14.

• On the other hand, once a program is burned into ROM and its source
code is no longer accessible, software flips into an inviolable state. At this
point re-soldering, for all it unpleasantness, remains the only option for
effecting change. Circuit Benders hack digital toys not by rewriting the
code (typically sealed under a malevolent beauty-mark of black epoxy)
but by messing about with traces and components on the circuit board. A
hardware hack is always lurking as a last resort, like a shim bar when you
lock your keys in the car.

• Thanks to computer memory, software can work with time. The
transition from analog circuitry to programmable microcomputers gave
composers a new tool that combined characteristics of instrument, score
and performer: memory allows software to play back prerecorded sounds
(an instrument), script a sequence of events in time (a score), and make
decisions built on past experience (a performer.) Before computers,
electronic circuitry was used primarily in an instrumental capacity – to
produce sounds immediately15. It took software-driven microcomputers
to fuse this trio of resources into a new paradigm for music creation.

• Given the sheer speed of modern personal computers and software’s
quasi-infinite power of duplication (see above), software has a distinct
edge over hardware in the density of musical texture it can produce: a
circuit is to code as a solo violin is to the full orchestra. But at extremes of
its behavior hardware can exhibit a degree of complexity that still seems
beyond the power of software to simulate effectively: initial tug of rosined
bow hair on the string of the violin; the unstable squeal of wet fingers on a
radio’s circuit board; the supply voltage collapsing in a cheap electronic
keyboard. Hardware still does a better job of giving voice to the irrational,
the chaotic, the unstable.

• Software is imbued with an ineffable sense of now -- it is the technology of
the present, and we are forever downloading and updating to keep it
current. Hardware is yesterday, the tools that were supplanted by
software. Vinyl records, patchcord synthesizers and tape recorders have
been replaced by MP3 files, software samplers and ProTools. In the ears
and minds of most users this is an improvement – software does the job
‘better’ than its hardware antecedents. Before any given tool is replaced
by a superior device, qualities that don’t serve its main purpose can be
seen as weaknesses, defects, or failures: the ticks and pops of vinyl
records, oscillators drifting out of tune, tape hiss and distortion. But when
a technology is no longer relied upon for its original purpose, these same
qualities can become interesting in and of themselves. The return to
‘outmoded’ hardware is not always a question of nostalgia, but often an
indication that the scales have dropped from our ears.

Hybrids
There are three areas of software/hardware crossover that deserve mention here:
interfaces for connecting computers (and, more pointedly, their resident

Collins: Semiconducting 7

software) to external hardware devices; software applications designed to
emulate hardware devices; and the emergence of affordable rapid prototyping
technology.

The most ubiquitous of the hardware interfaces today is the Arduino, a small,
inexpensive microcontroller designed by Massimo Banzi and David Cuartielles
in 200516. The Arduino and its brethren and ancestors17 facilitate the connection
of a computer to input and output devices, such as tactile sensors and motors.
Such an interface can imbue a computer program with some of the characteristics
we associate with hardware, but there always remains a MIDI-tinged sense of
mediation (a result of the conversion between the analog to digital domains) that
makes performing with these hybrid instruments slightly hazier than with a
purely hardware device – think of manipulating a robotic arm with a joystick, or
hugging an infant in an incubator while wearing rubber gloves.

The past decade has also seen a proliferation of software emulations of hardware
devices, from smart phone apps that simulate vintage analog synthesizers, to
iMovie filters that make your HD video recording look like scratchy Super 8 film.
The market forces behind this development (nostalgia, digital fatigue, etc.) lie
outside of the scope of this paper, but it is important to note here that these
emulations succeed by focusing on those aspects of a hardware device most
easily approximated in the software domain: the virtual Moog synthesizer
models the sound of analog oscillators and filters, but doesn’t try to approximate
the glitch of a dirty pot or the pop of inserting a patchcord; the video effect alters
the color balance and superimposes algorithmically generated scratches, but
does not let you misapply the splicing tape or spill acid on the emulsion.

Although at the time of writing affordable 3D printers and rapid prototyping
devices remain the purview of the serious DIY practitioner, there is no question
that these technologies will enter the marketplace in the near future. When they
do the barrier between freely distributable software and tactile hardware objects
will become quite permeable. A look thru the Etsy website reveals how
independent entrepreneurs have already employed this technology to extend the
publishing notion of “print on demand” to something close to “wish on
demand.”18

Conclusion
I came of age as a musician during the era of the ‘composer-performer’: the Sonic
Arts Union, David Tudor, Terry Riley, LaMonte Young, Pauline Oliveros, Steve
Reich, Philip Glass. Sometimes this dual role was a matter of simple expediency
(established orchestras and ensembles wouldn’t touch the music of these young
mavericks at the time), but more often it was a desire to retain direct, personal
control that led to a flowering of composer-led ensembles that resembled rock
bands more than orchestras. Fifty years on, the computer – with its above-
mentioned power to fuse three principle components of music production – has
emerged as the natural tool for this style of working.

But another factor driving composers to become performers was the spirit of
improvisation. The generation of artists listed above may have been trained in a

Collins: Semiconducting 8

rigorous classical tradition, but by the late 1960s it was no longer possible to
ignore the musical world outside the gates of academe or beyond the doors of
the European concert hall. What was then known as ‘World Music’ was reaching
American and European ears through a trickle of records and concerts.
Progressive Jazz was in full flower. Pop was inescapable. And composers of my
age – the following generation -- had no need to reject an older tradition to strike
out in a new direction: Indian music, Miles Davis, the Beatles, John Cage, Charles
Ives and Monteverdi were all laid out in front of us like a buffet, and we could
heap our plates with whatever pleased us, regardless of how odd the
juxtapositions might seem. Improvisation was an essential ingredient, and we
sought technology that expanded the horizons of improvisation and
performance, just as we experimented with new techniques and tools for
composition.

It is in the area of performance that I feel hardware – with its tactile, sometimes
unruly properties -- still holds the upper hand. This testifies not to any failure of
software to make good on its perceived promise of making everything better in
our lives, but to a pragmatic affirmation of the sometimes messy but inarguably
fascinating irrationality of human beings: sometimes we need the imperfection of
things.

1 This is a revision of a lecture first presented at the ‘Technology and Aesthetics’
Symposium, NOTAM (Norwegian Center for Technology in Music and the Arts),
Oslo, May 26-27 2011. Revised for presentation at ‘Musical Listening in the Age
of Technological Reproducibility’ conference March 2013. The author gratefully
acknowledges NOTAM’s support of his research.

2 Private conversation, New York City, exact date unknown.

3 Although this potential was clear to our small band of binary pioneers, the
notion was so inconceivable to the early developers of personal computers that
Apple trademarked its name with the specific limitation that its machines would
never be used for musical applications, lest it infringe on the Beatles’ semi-
dormant company of the same name – a decision that would lead to extended
litigation after the introduction of the iPod and iTunes. This despite the fact that
the very first non-diagnostic software written and demonstrated at the
Homebrew Computer Club in Menlo Park, CA in 1975 was a music program by
Steve Dompier, an event attended by a young Steve Jobs (see
http://www.convivialtools.net/index.php?title=Homebrew_Computer_Club)
(accessed on February 21, 2013).

4 For more on the implications of MIDI’s separation of sound from gesture see
Collins, Nicolas, 1998. Ubiquitous Electronics -- Technology and Live
Performance 1966-1996. Leonardo Music Journal Vol. 8. San Francisco/Cambridge
27-32. One magnificent exception to the gesture/sound disconnect that MIDI
inflicted on most computer music composers was Tim Perkis’ ‘Mouseguitar’

Collins: Semiconducting 9

project of 1987, which displayed much of the tactile nuance of Tudor-esque
circuitry. In Perkis’ words:

When I switched to the FM synth (Yamaha TX81Z), there weren't any
keydowns involved; it was all one 'note'... The beauty of that synth -- and
why I still use it! -- is that its failure modes are quite beautiful, and that
live patch editing [can] go on while a voice is sounding without
predictable and annoying glitches. The barrage of sysex data – including
simulated front panel button-presses, for some sound modifications that
were only accessible that way -- went on without cease throughout the
performance. The minute I started playing the display said 'midi buffer
full' and it stayed that way until I stopped.

(Email from Tim Perkis, July 18, 2006.)

5 This quote is drawn from my memory of working as a technical assistant on the
recording session, and has been confirmed by one other colleague present at the
time. This version of the interview was not used in the final video series, or
transcribed in the book, but Lucier has made similar observations in subsequent
interviews.

6 This limitation in software was a major factor motivating Kuivila to develop,
with David Anderson, the programming language ‘Formula’, whose strength lay
in its accurate control of the timing and synchronization of parallel musical
events – getting linear code a little closer to planar. See
http://www.eecs.berkeley.edu/Pubs/TechRpts/1991/5643.html (Accessed
February 21, 2013)

7 Karplus, Keven and Strong, Alex. 1983. Digital Synthesis of Plucked String and
Drum Timbres. Computer Music Journal 7 (2). Cambridge. 43–55.

8 See http://steim.org/product/cracklebox/ (Accessed February 21, 2013)

9 This comparison echoes the familiar ‘digital vs. analog’ distinction, but I prefer
to focus on the difference between software and hardware because even digital
hardware can be made to sing outside its ‘normal’ mode of operation.

10 Private conversation, Norwich, England, January 2004.

11 See http://supercollider.sourceforge.net/ (Accessed February 21, 2012=3)

12 See http://chuck.cs.princeton.edu/ (Accessed February 21, 2013)

13 See http://www.loudobjects.com/ (Accessed February 21, 2013)

14 See http://www.nicolascollins.com/collinscup.htm (Accessed February 21,
2013)

Collins: Semiconducting 10

15 Beginning in the late 1960s a handful of artist-engineers designed and built pre-
computer circuits that embodied some degree of performer-like decision-making:
Gordon Mumma’s ‘Cybersonic Consoles’ (1960s-70s), which as far as I can figure
out were some kind of analog computers; my own multi-player instruments built
from CMOS logic chips in emulation of Christian Wolff’s ‘co-ordination’ notation
(1978). The final stages of development of David Behrman’s ‘Homemade
Synthesizer’ included a primitive sequencer that varied pre-scored chord
sequences in response to pitches played by a cellist (‘Cello With Melody Driven
Electronics’, 1975) presaging Behrman’s subsequent interactive work with
computers. And digital delays begat a whole school of post-Terry Riley
canonical performance based on looping and sustaining sounds from a
performance’s immediate past into its ongoing present.

16 http://www.arduino.cc/ (Accessed March 27, 2013). Close to 500,000
Arduinos have been sold as of early 2013.

17 Most notably the STEIM SensorLab (see
http://steim.org/product/discontinued-products/) (Accessed March 28, 2013)
and the Infusion System’s I-Cube (see
http://infusionsystems.com/catalog/index.php
 and http://www.xspasm.com/x/sfu/vmi/ISEA95.html) (Accessed March 28,
2013), more expensive MIDI-based interfaces produced in the 1990s.
18 http://www.etsy.com (Accessed November 8, 2013.)

